F8-x86_64 on the Acer Ferrari 3400LMi

F8-x86 64 on the Acer Ferrari 3400LMi

by
Sven-Goéran Bergh

sgbhfdataba.se

Table of Contents

1 INETOAUCTION. . ceteii ettt et e e e e e e e e et ene e e aneanas 3
1.0 VBTSION. .. ittt et aas 3
1.2 Quick reference guide.........oiuuiiiiiiiiiie e 3

2 INSTAllATION. c.uiitiei ettt ans 5
2.1 Potential pitfalls......ccoiiiiiiii e 5

2.1.1 Graphical iNStaller.......ccuniiniiiiee e 5
2.1.2 DiSK SIZB.cuuiiiiiiiiiieie et 5

O = = 1o B b o k4 TP 6
3.1 Upgrading the driVe.........cocuiiiiiiii e 6

4 TEEE 1394 FiTEWIT. ...ttt ettt et e e e ae et e e e e e e eaeaaaeanas 6
4.1 Potential pProblems..........iiniiiiii s 7
4.2 Configuring FiTE@WITE.....ccuiiiniiiiiiiiee et e e e e e e e e anas 8
4.3 COIMIMEIIES. . ettt ettt e et e et et et e e et e e e e en e enenanenns 8

S L0 1S = PP 9

6 5-IN-1 CaArd TEAUET ... ceniiiiiiei et e et e et e e et e eaanns 9

/A = O o1 1 o F PP PRP 9

8 Special keys & DULLONS.......ovniiiiii e 9
8.1 Configuration ProCeAUTE..........c.oiuniiiiiiieieeieee e e e e e 10

8.1.1 X KEY-COURS...euitniiiiiiiiieie et e e et et e et e e e e e e e enaes 10
8.1.2 SCAN-COAEBS....uiiiiiiiieie ittt e e e e et e ee e e e e e e e aneans 11
8.1.3 LINUX KEY-COUES.....ceuiiiniiiiiiiiiieie et e e e et e e et e e e e e e e e ens 12
8.1.4 X key-codes revisSited......ccouviiiiiiiiiiiiiiiicie e 13
8.1.5 Configure aCliONS.......c.ciuiiiiiiiii e 14

O CPU & ACPI SUPDDOT ettt e e et e e e te e et e e et e e e e eaeaaanan 14
O I 1 U 1] 0 1= o Lo FO U 15
9.2 CPU frequency SCaliNg......ccoiuiiiiiiiiieiie e e 15

IO @) =Y o) o} (of T U PO 15
10,1 BaASICS . tutuiniiiei ettt e ettt e e e anas 15

10.1.1 The 1adeOn ATVc.iuniiiiiiiiie e e e r e e e ens 16
10.1.2 Simple X configuration.........ccccoviiiiiiiiiiie e 16
10.2 DUAL-HEAA. e 16
10.2.1 Virtual SCTEEM SIZE.....ccuiiniiniiiiiiieiie ettt r e e e 17
10.2.2 The XTrandr t00L.........iuiiiiiie e ees 18
10.2.3 FN-F5 DULEON. ...t e 18
10.3 3D ACCELETAtION.....uiieiiiiiiiiii e e e e e 19
10.3.1 Simple benchmarK..........ccooiiiiiiiiiiii e 20
10.3.2 OptimizZation.....coneniniiiiiiii et e e e e enas 20

F8-x86_64 on the Acer Ferrari 3400LMi

10.3.3 Other 0DSErVAtIONS.cuuiiiiiiieii e e e e eeanas 20
O IV 0 | PPN 21
10.4.1 Load deteCtion......cceuiiniiiiiiiiie e e ees 21
10.4.2 NTSC OF PAL. ..ottt et e e e 21
10.4.3 Initialization.......cooiiiii e 21

I 01§ Lo B o - Yo FO PPN 22
12 WITELeSS INIC.... oot et e e e e e et e e eae e e anees 22
12.1 Installing WLANuii e e e e e e e e e e e e e e e anan 23
12.1.1 WLAN B0O0IS...uuiiiiiiiiiiiie ettt e e e e et e e e e e e e e ean e s eanas 23
12.1.2 WLAN fITTIWATE...c.uiintiiiiiiieei ettt et e e e e eeea e e eaae e eaneanas 23
12.2 Get started with WLAN.......oiiiii e 24
12.2.1 The Manual Way.......ccoveuiiiiiii ettt eans 24
12.2.2 The GUI WaY...cuiiiiiieiieeie ettt ee et s et e e e aneanas 26

13 BIUEBLOOTN. .o 26
13.1 Verify installation........c.viiiiii e 26
13.2 Using a phone moOdem..........couiiiiiiiiiiiiieii e e e ae e 27
13.2.1 Prepare the phone..........ooviiiiii e, 28
13.2.2 Prepare the laptop ..o 28
13.2.3 Static configuration..........c.ccouiiiiiiiiii 30
13.2.4 DynamicC FOULINE.iiuiiiiiiiii e e e e e e e e e e anens 31
13.2.0 GP RS ...ttt anas 32

13.3 SeNAing fIleS...cuiniiiiiiii e 33
13.4 Mouse & Keyboard..........coouiiiiiiiiie e 33
13.5 KBIUETOOTN. .. e e e e e e 33
13.5.1 InStallation.....c..vvuiiniiiii e 33
13.5.2 Mouse & Keyboard...........ccouiiiiiiiiiiiiee e 34
13.5.3 SCAN fOT AEVICES....cuniiiiiiieiii e 34
13.5.4 LOCK SCIEEIM...c.uiiiiiiiiieiie ettt e e e e e e e eanas 35
13.5.5 Transfer fileS. ... 36

I i = 1 =T o PN 36
14.1 Configuring ITDA......o.ii e e e e e 36
14.2 Testing ITDA. ... e e e e e eaes 38
A KoY [=) o o FO PPN 38
15.1 Installing daemOn.........couiiniiiii e e e 39
15.2 Potential iSSUE.....ccuiiniiiii e 41
15.2.1 CONNECTIIIG . cuetnitniiiiei ittt et e e e e e e ea e eneanens 41
15.2.2 DiSCONNECTING...cuiiiiiiiiiiii e e e e e et e e e e anas 41
15.2.3 System hang......cccuoiiiiiiii e 42

16 REIEIEIICES. ..ottt e et e et et e et et e e e e e e e enaes 42
Appendix A - /etC/X11/XOTG.CONL....ccuiiiii e 44
Appendix B - dual-head.Sh.........c.ooiiiiii e 46
Appendix C - dun-bind.Sh........cooiiiii e 52
Appendix D - /etc/init.d/slmodemd............c.ooviiiiiiiii e 54

F8-x86_64 on the Acer Ferrari 3400LMi

1 Introduction

This document is primarily designed for my own records for future use. However,
it is always nice if it may help others to get started with Linux on their laptops.
The steps to get things to play on the Acer Ferrari 3400 Lmi are described here.
Most procedures are general and may be useful for other hardware as well.

' WARNING !!!

However, I must warn those of you that still enjoy the luxury of an independent
mind and free will. Stay away! Do not ever lay your hands on the Ferrari.

The same warning applies to the GNU/Linux software platform in general. It
was several years ago my self defense was totally broken.

The combination is truly devastating! I have noticed strange things happening to
me since I got My Precious...

Please feel free to comment on any topic or possible improvements in this
document.

1.1 Version

This is an updated version of this document. This time I have chosen to install
Fedora 8 x86_64, and many things has really changed to the better. The first
version dealt with FC4-x86_64, and there are no major changes for FC5-x86_64.
Consequently, if you are heading for FC4 or FC5 you probably want to have a
look at the previous version of this document. While some details may be specific
for Fedora, most stuff should translate to other distributions as well.

1.2 Quick reference guide

I've got all of the hardware working. Although, somethings need some extra
tweaks. A summary may be found in the table below

F8-x86_64 on the Acer Ferrari 3400LMi

Hardware Status

CPU

PCI Bridge
Display
Graphics
card

RAM

Hard drive

NIC (wired)

NIC
(wireless)

Modem

DVD drive

Sound

Touchpad

ACPI

Special
keys &
buttons

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

Details

Mobile AMD Athlon 64
3000+

VIA VT8237
[K8T800/K8T890 South]

15”7 SXGA TFT
(1400x1050)

ATI Mobility Radeon 9700
128 MB, 8x AGP

512 MB DRAM (extended
to 2GB)

Original: Hitachi
Travelstar 80 GB Ultra
ATA 100,

IC25N080ATMRO04-0, 4200

rpm
Upgrade: Seagate
Momentus, 160 GB,
ATA/ATAPI-6, 5400rpm,
ST9160821A

Broadcom NetXtreme

BCM5788 Gigabit Ethernet

Broadcom BCM4306
802.11b/g W-LAN

VIA AC'97 56k Modem.

Matshita DVD-RAM
UJ-825S (DVD/CD +/- R/W,
DVD-RAM)

VIA VT8233/A/8235/8237
AC97 Audio

Synaptics SynPS/2 with 4
multi-buttons

Suspend to RAM,
Suspend to disk, etc.

Mail, web, P1, P2, volume,
mute, Fn-*, etc.

Notes

No configuration needed.
Frequency scaling works
out of the box.

No configuration needed.
No configuration needed.

Full functionality with the
radeon driver, see below.

No configuration needed.

No configuration needed.

No configuration needed.

Use kernel module b43,
see comments below.

Unstable. See below for
configuration.

No configuration needed.

No configuration needed.

No configuration needed.
Multi-buttons works as
well.

No configuration needed.
Works out of the box.

See below for
configuration.

F8-x86_64 on the Acer Ferrari 3400LMi

Hardware Status Details Notes
PC-card OK Texas Instruments No configuration needed.
PCI4510 PC card/Cardbus
Bluetooth OK Cambridge Silicon Radio = No configuration needed,
see comments below.
IEEE 1394 OK Texas Instruments No configuration needed,
Firewire PCI4510 IEEE-1394 see comments below.
USB OK VIA, 4xUSB 2.0 No configuration needed.
Infrared OK See below for
configuration.
Card reader OK 5-in-1 (MMC, SM, SD, MS No configuration needed.
[Pro])

2 Installation

No special procedure is needed during the core installation of F8 x86_64.
Partition the hard drive as desired and install the components that you like.
However, some packages will make life easier when configuring your new laptop.
These are mentioned in the corresponding sections below and may be installed
afterwards.

2.1 Potential pitfalls

Depending on your setup there are some pitfalls you should know about.

2.1.1 Graphical installer

Fedora Core 5 installation and later runs without any problems, while Fedora
Core 4 should be started with:

linux nofb

This tells the installation to disable the frame buffer so you may use the graphical
mode of the installer. Otherwise you will loose the display shortly after the
installation enters graphical mode. This only applies to FC4 and earlier.

2.1.2 Disk size

However, depending on your hardware you might notice a strange disk size
during the installation of F8. If you see a disk size less than expected you should
pass the kernel option libata.ignore hpa=1 to the installation.

1. When you see the graphical boot screen, press tab.

2. Edit the boot command to look like:

F8-x86_64 on the Acer Ferrari 3400LMi

vmlinuz initrd=initrd.img libata.ignore_hpa=1

3 Hard drive

No hassle what so ever, but my own reflection is that the standard hard drive
does not match the “high end gear” profile of this laptop. When the laptop was
released 120 MB drives was the latest of the greatest and 100MB drives were off
the shelf goods in most stores. However, a smaller drive would have been ok at a
higher speed, at least 5400rpm.

3.1 Upgrading the drive

I am addicted to VMware and want extra of everything, size, speed, RAM, etc.
Thus, I have replaced the original Hitachi Travelstar 80 GB (4200rpm) drive with
a Seagate Momentus 160 GB (5400rpm, ATA/ATAPI-6, ST9160821A). What a
difference! The higher speed, as well as the higher storage density, pays off in far
better performance. Operating temperature is the same as for the original drive.
According to the smartmontools it runs at 40-48 °C during normal load with
peaks above 50 °C during heavy load. A highly recommended upgrade!

Depending on the hardware you might notice a strange disk size of your new
drive. If you just plan to copy your existing installation to the new drive you need
the following two lines in your /etc/modprobe.conf file:

alias scsi _hostadapter libata
options libata ignore hpa=1

If you plan on installing a fresh system on the new drive take a look in the
2 Installation section above. During the installation the proper entries are written
to /etc/modprobe.conf.

4 IEEE 1394 Firewire

With FC5 and later there should not be any problems with the IEEE 1394
Firewire support. For me it works just as smooth as the USB support. If you are
running kernel version 2.6.14 or later you may skip this section, unless you have
specific interest in tweaking you Firewire settings.

A new alternative driver stack for Firewire support (a.k.a Juju) was introduced as
experimental in kernel version 2.6.22. In Fedoras kernel configuration
2.6.23.9-85.1c8 the new IEEE 1394 driver stack replaces the old drivers. The rest
of this section deals with the old driver stack, i.e before Fedora kernel
2.6.23.9-85.fc8. For the most recent information please refer to
http://www.linux1394.org.

However, on systems with kernel version 2.6.13 or earlier some might experience
problems with the Firewire support due to different default values used in the
kernel module. First a short description of the potential problems.

http://www.linux1394.org/

F8-x86_64 on the Acer Ferrari 3400LMi

4.1 Potential problems

There are no problems regarding loading modules or mounting an external IEEE
1394 drive, and if you are patient you managed to browse the content as well.
The problems starts when you try to transfer larger amounts of data. The process
stalls and chokes up the system log with messages like:

kernel: ieeel394: sbp2: aborting sbp2 command

kernel: scsil : destination target 0, lun 0

kernel: command: Write (10): 2a 00 02 el bc 58 00 00 10 00
kernel: ieeel394: sbp2: aborting sbp2 command

kernel: scsil : destination target 0, lun 0

kernel: command: Write (10): 2a 00 02 el bc 58 00 00 10 00
kernel: ieeel394: sbp2: aborting sbp2 command

kernel: scsil : destination target 0, lun 0

kernel: command: Test Unit Ready: 00 00 00 00 00 00
kernel: ieeel394: sbp2: reset requested

kernel: ieeel394: sbp2: Generating sbp2 fetch agent reset

redneck kernel: ieeel394: sbp2: aborting sbp2 command

kernel: scsil : destination target 0, lun 0

kernel: command: Write (10): 2a 00 01 06 d0 df 00 00 03 00
kernel: ieeel394: sbp2: aborting sbp2 command

kernel: scsil : destination target 0, lun 0

kernel: command: Write (10): 2a 00 01 06 d0 df 00 00 03 00
kernel: ieeel394: sbp2: aborting sbp2 command

kernel: scsil : destination target 0, lun 0

kernel: command: Write (10): 2a 00 02 el bd b0 00 00 20 00

Seems to me like a hole bunch of timeouts with corresponding bus resets. These
suspicions got even stronger after timing a read data transfer:

time cp -rp /media/ieeel394disk/430MB folder ~

real 20m29.516s
user 0m0.052s
Sys Om6.476s

Copying 430 MB takes 20 minutes 29 seconds (comparable to USB 1.0
performance). However, the “actual” time is less than 7 seconds. 20 minutes and
22 seconds are spent waiting. Waiting for what? I do not know, but obviously
some bits and pieces fail during the transfer. Furthermore, I do not feel
comfortable with the data integrity when I see these kind of results.

After some digging in the kernel documentation and a quick look in the sbp2.c
source file it turned out that this problem probably is related to a “buggy IEEE
1394 chip” in the external device. The proposed solution is to load the sbp2
module with the argument serialize io=1. It turned out really well, so here are
some tips regarding the IEEE 1394 configuration.

F8-x86_64 on the Acer Ferrari 3400LMi

4.2 Configuring Firewire

If you experience the problems mentioned above, and you are running kernel
version 2.6.13 or earlier, put the following line in your /etc/modprobe.config:

options sbp2 serialize_io=1 max_speed=2
The serialize io=1 option tells the scsi drivers to only send one scsi command

at a time. Unfortunately, this setting has a small impact on performance, but it is
the fix that makes things work.

In kernel version 2.6.14 the default value for serialize_ io was changed from 0
to 1. Thus, if you are running kernel version 2.6.14 or later you should not need
do do anything, unless you want to optimize performance (see comments below)

or fiddle with the other settings.

The max_speed option might be useful in rare occasions if you want to limit the
maximum transfer rate to support “even more buggy” external hardware. Valid
values for the max speed option are:

0 100 mb
1 200 mb
2 400 mb (default)

3 800 mb

When timing the very same read transfer as above I now get the following result:

time cp -rp /media/ieeel394disk/430MB folder ~

real 0m24.871s
user O0m0.076s
sys Om6.400s

That is what I call improvement! Going from over 20 minutes down to roughly 25
seconds.

4.3 Comments

After some further exercises with other external hard drives it turned out that the
problem described in the previous section indeed seems to be related to the IEEE
1394 chip in the external drives. With some hardware it is quite possible to use
the faster serialize io=0 option. The performance benefit is in the range
20-25%, so consider your options. If you only use IEEE 1394 for your own
hardware and it works well with the faster setting, go for it. Otherwise,
compatibility with other hardware might be more valuable. Personally, I think it
was a wise decision to change the default setting in the sbp2 module. After all
those “buggy IEEE 1394 chips” seem to be quite common, and prior to start

8

F8-x86_64 on the Acer Ferrari 3400LMi

optimizing performance you just want things to work.

5 USB

USB support works as expected. I have noticed no problems what-so-ever with
the USB ports. Especially with the desktop enhancements introduced with FC5 it
works like a charm. Absolutely no configuration needed.

6 5-in-1 Card reader

The 5-in-1 card reader utilizes the USB interface and is operational right after
installation. Analogous to the USB ports there is no hassle at all.

7 PC-card

I have only used the PC-card slot for a Compact Flash memory adapter and it just
works. True plug-and-play.

8 Special keys & buttons

The special keys & buttons are some what confusing. Some of the special buttons
do not need any additional configuration to work. Others need a key code
mapping, while some even lack a scan code. The chain of scan codes and key
codes translations starts in the core Linux kernel and ends in your X
configuration. Some examples of confusion:

The Mail button gets a pre-configured key code of 155 by Linux, but with X
loaded the key code is 236. The buttons WWW, Fn-F4, Fn-F5, Fn-F8, Fn-up and
Fn-down show similar behavior.

The buttons P1, P2, Fn-F1, Fn-F2, Fn-F3 do not have pre-configured key codes,
while their respective scan codes are e074, e073, €025, e026 and e027. However,
in single user mode they all lack scan-codes. I do not know why.

However, do not despair. It is possible to get all of the special keys & buttons
working. Here is a short summary of my current status on this issue.

F8-x86_64 on the Acer Ferrari 3400LMi

Config
0
3 a
i
nks;
~| O|w
Button | Work 4?,,-" >§ Q Comments
Mail yes X | X |E-mail button, ex: launch Thunderbird
WWW yes x | x| WWW button, ex: launch Firefox
Pl yes | x| x| x|User button, ex: launch NetBeans
P2 yes | x| x|x|User button, ex: launch VMware
Fn-F1 yes | x| x |x|User button, ex:
Fn-F2 yes | x| x |x|User button, ex:
Fn-F3 yes | x| x|x|User button, ex:
Fn-F4 yes Sleep-button recognized by ACPI.
Fn-F5 yes x |x|Toggle external display, XF86Display
Fn-F6 yes Dim display, no configuration needed
Fn-F7 yes Toggle touch-pad, no configuration needed
Fn-F8 yes x | x| Toggle mute
Fn-Home | yes Go home (XF86Home)
Fn-End yes Go to end (XF86End)
Fn-up yes X | x |Volume raise
Fn-down | yes X |x|Volume lower
Fn-left | yes Brightness lighter, no configuration needed
Fn-right | yes Brightness darker, no configuration needed
Bluetooth| yes No configuration needed
WLAN yes No configuration needed

8.1 Configuration procedure

It is a tedious procedure to find out the proper scan-codes, Linux key-codes and
X key-codes. Yes, on top of the scan-codes there are both Linux and X key-codes
to keep track of. I probably have it all confused, but here is how I did it:

8.1.1 X key-codes

1. Start by finding out what key-codes X already knows of. Here xev is a
valuable friend. The buttons that had key codes configured by default for

10

F8-x86_64 on the Acer Ferrari 3400LMi

me was:

Button X key-code Default X key symbols

Mail 236 -

WWW 178 -

Fn-F4 223 none, but triggers KPowersave suspend->RAM

Fn-F5 214 none, but generate a Capability changed event
that is received by the X-server.

Fn-F8 160 -

Fn-NumLk 77 Num Lock

Fn-Scr Lk 78 Scroll Lock

Fn-Home 97 Home

Fn-End 103 End

Fn-up 176 -

Fn-down 174 -

These are the buttons that are the simplest to get working. Save these X key-
codes for future use. First we need to get the other keys to show up under X as
well. In order for them to do so they need properly configured Linux key-codes
that they lack for the moment.

8.1.2 Scan-codes

This step is different and considerable easier under F8 than FC4 or FC5. There is

no need to shutdown X now as before.

2. Just press the desired key, ex. P1. Then take look at the dmesg output:

dmesg | tail

atkbd.c: Unknown key pressed (translated set 2, code 0xf4 on
isa0060/serio0).

atkbd.c: Use 'setkeycodes e074 <keycode>' to make it known.
atkbd.c: Unknown key released (translated set 2, code 0xf4 on
isa0060/serio0).

atkbd.c: Use 'setkeycodes e074 <keycode>' to make it known.

I got the following result:

11

F8-x86_64 on the Acer Ferrari 3400LMi

Button scan-code

P1 e074
P2 e073
Fn-F1 e025
Fn-F2 e026
Fn-F3 e027

8.1.3 Linux key-codes

3. Next, figure out what Linux key-codes that are available by looking at the
Linux scan-code — key-code mapping.
getkeycodes

Plain scancodes xx (hex) versus keycodes (dec)
for 1-83 (0x01-0x53) scancode equals keycode

0x50: 80 81 82 83 99 0 86 87
0x58: 88 117 0 0 95 183 184 185
0x60: 0 0 0 0 0 0 0 0
0x68: 0 0 0 0 0 0 0 0
0x70: 93 0 0 89 0 0 85 091
0x78: 90 92 0 94 0 124 121 0

Escaped scancodes e0 xx (hex)

e0 00: 0 0 0 0 0 0 0 0
e0 08: 0 0 0 0 0 0 0 0
e0 10: 165 0 0 0 0 0 0 0
e0 18: 0 163 0 0 96 97 0 0
e0 20: 113 140 164 0 166 0 0 0
e0 28: 0 0 255 0 0 0 114 0
e0 30: 115 0 172 0 0 98 255 99
e0 38: 100 0 0 0 0 0 0 0
e0 40: 0 0 0 0 0 119 119 102
e0 48: 103 104 0 105 112 106 118 107
e0 50: 108 109 110 111 0 0 0 0
e0 58: 0 0 0 125 126 127 116 142
e0 60: 0 0 0 143 0 217 156 173
e0 68: 128 159 158 157 155 226 0 112
e0 70: 0 0 0 0 0 0 0 0
e0 78: 0 0 0 0 0 0 0 0

4. First we need to set a Linux key-code for the keys that lack one. Add the
following lines to /etc/rc.d/rc.local to set the key-codes after all
services are started.

Set Linux key-codes for special keys & buttons:
#

12

F8-x86_64 on the Acer Ferrari 3400LMi

Buttons: P1 P2
setkeycodes e074 151 e073 152
#

Buttons: Fn-F1 Fn-F2
setkeycodes e025 131 e026 132

e027 133

5. In order to avoid a restart to load these setting, issues the very same

commands.

setkeycodes e074 151 e073 152
setkeycodes e025 131 e026 132 e027 133

8.1.4 X key-codes revisited

6. Repeat step 1 and use xev to figure out what X key-codes these buttons

got. I got the following:
Button X key-code

P1 201
P2 146
Fn-F1 135
Fn-F2 140
Fn-F3 248

7. Ok, now we have X key-codes for all special keys & buttons and need to
map them to proper key-symbols. In order to do that put the following in

the file /etc/X11/Xmodmap:

! Acer Ferrari 3400Lmi special keys & buttons
|

Fn-down 174

! Button X key-code
| e e
! Mail 236

! WWW 178

! P1 201

! P2 146

! Fn-F1 135

! Fn-F2 140

! Fn-F3 248

! Fn-F5 214

! Fn-F8 160

! Fn-up 176

|

1

keycode 236 = XF86Mail
keycode 178 XF86WWW
keycode 201 = XF86Launchl
keycode 146 XF86Launch?2

13

F8-x86_64 on the Acer Ferrari 3400LMi

keycode 135 = XF86Launch3

keycode 140 = XF86Launch4

keycode 248 = XF86Launchb

keycode 214 = XF86Display

keycode 160 = XF86AudioMute
keycode 176 = XF86AudioRaiseVolume
keycode 174 = XF86AudioLowerVolume

8. The setting above are loaded the next time X is started, but to load them
without a restart of X do:

xmodmap -verbose /etc/X11l/Xmodmap

! executing work queue
|

keycode 0Oxec = XF86Mail

keycode 0xb2 = XF86WWW
keycode 0xc9 = XF86Launchl
keycode 0x92 = XF86Launch2
keycode 0x87 = XF86Launch3
keycode 0x8c = XF86Launch4
keycode 0xf8 = XF86Launch5
keycode 0xd6 = XF86Display
keycode 0xa0 = XF86AudioMute

keycode 0xb0 XF86AudioRaiseVolume
keycode 0Oxae = XF86AudioLowerVolume

8.1.5 Configure actions

9. Finally it is time to configure the button actions. Actions for all but the
audio control keys are easily configured in the KDE Control Center ->
Regional & Accessibility -> Keyboard Shortcuts under the tab Command
Shortcuts.

10. However, you probably also want to configure the audio control buttons.
This is done in the same manner inside KMix. Fire up KMix and go to the
menu Settings/Configure Global Shortcuts...

11.If you want to use the Fn-F5 key to manipulate the graphical output, refer
to the section 10 Graphics below.

9 CPU & ACPI support

A pleasant news is the advancements in ACPI support. Now all the desirable
features are working right out of the box, without any configuration.

14

F8-x86_64 on the Acer Ferrari 3400LMi

9.1 Suspend

I am glad to see that both Suspend to Disk and Suspend to RAM works like a
charm. Previous there has been a lot of struggle, if at all possible, to get a stable
and reliable ACPI support. OK, I know that suspend has been around for a while
by now, but hand on the heart - has it been user friendly and reliable? I have not
had that experience. So a reliable ACPI support right out of the box feels really
luxurious.

Even the special sleep key, Fn-F4, is configured during the installation and works
as expected (Suspend to RAM). The power button works of course as well, as it
always has done.

9.2 CPU frequency scaling

The CPU frequency scaling has been working for quite some time now. So it is no
big surprise that it works out of the box in F8 on this puppy. However, it is
always nice to see things evolve and improve. The improvements of the suspend
functionality mentioned above together with solid CPU frequency management
really shows off in power management.

KPowersave now feels really mature and has three pre-configured CPU policies:
Performance, Dynamic and Powersave. Dynamic is the default and there is no
real reason to change it.

10 Graphics

The advancement of Xorg and its related drivers and modules has been enormous
the last two years. Fedora 8 includes Xorg 7.2 which is a welcome improvement
in X-server configuration. Furthermore, there is absolutely no need to use the ATI
proprietary driver any more. This is a true liberation, for sure I will not miss all
the violations the proprietary ATI driver did to my Xorg configuration.

The graphical hardware is properly identified and setup during the installation,
so you will enjoy X11 right from the start.

Another nice thing is that the dim display button, Fn-F6, works without any
configurations.

10.1 Basics

The Ferrari 3400 is equipped with a ATI Mobility Radeon 9700 chip. This chip
has 128MB of memory and provides two external outputs, VGA-O and S-video.
The built-in display is called LVDS. These names refer to the definitions used by
the radeon X driver.

The graphical chip has 2 CRTCs, eg pipeline for rendering graphics. This means
that only two outputs may be active simultaneously, either LVDS + VGA-O, LVDS

15

F8-x86_64 on the Acer Ferrari 3400LMi

+ S-video or VGA-O + S-video. This is a common limitation for most graphics
hardware.

Note: The output names differ depending on the driver used. The names used in
this document relate to the radeon driver. If you use some other driver use
xrandr -qg to find out the proper names (provided that it supports RandR).

10.1.1 The radeon driver

Support for the ATI Mobility Radeon 9700 chip in the Ferrari is provided by the
radeon driver. This driver supports all the features we want: the RandR
extension (v 1.2), 3D acceleration (DRI) and TV-out.

There is also the ati driver, not to be confused with the proprietary fglrx

driver. However, the ati driver is only a wrapper that auto-detects ATI cards and
load the appropriate driver. In our case that will result in the radeon driver being
loaded.

The main improvement in Xorg 7.2 is the arrival of version 1.2 of the X RandR
(Resize and Rotate) extension. It provides automatic discovery of modes together
with the ability to configure outputs dynamically. As of today only a few drivers
support RandR 1.2. Fortunately, the radeon driver is one of them.

10.1.2 Simple configuration

If you are familiar with X configuration and take a look at the default
/etc/X11/xorg.conf file, generated during the installation you will notice a
significant change. Many of the traditional settings, sync and refresh rates,
modes and modelines, are gone. All these settings are now auto-detected by
RandR 1.2 and should only be present if you want to override the detected values.
In some rare situations this might be needed, e.g. when an external monitor
reports incorrect values.

In order to get full dual-head support you only need to add one line to the default
X configuration. If you want to optimize 3D acceleration you need another line.
That is a total of two lines for a full fledge X configuration supporting all features.
Quite an improvement. Thank you all nice X guys!

The X server log file /var/log/Xorg.0.log will be your valuable companion
when it comes to troubleshooting or just checking what configuration that is
auto-detected.

For reference my xorg.conf is presented in Appendix A.

10.2 Dual-Head

The X Resize and Rotate (RandR) extension introduces a significant shift in dual-
head configuration with its version 1.2. All your setting may now be altered on

16

F8-x86_64 on the Acer Ferrari 3400LMi

the fly by the command line tool xrandr, and there is no need to restart the X
SEerver.

10.2.1 Virtual screen size

RandR works its magic by means of a virtual screen that is larger than the a
single monitor.

The size of the virtual screen is reported as the maximum value by the command:

xrandr -q
Screen 0: minimum 320 x 200, current 1400 x 1050, maximum 1400 x 1200

In this case the size is 1400x1200, which is the default virtual screen size for this
setup. The default screen size is too small for serious dual-head configurations.
This value needs to be increased by setting the Virtual option in the Display sub-
section in /etc/X11/xorg.conf:

SubSection "Display"
Viewport 0o

Depth 24
Virtual 3000 2000
EndSubSection

This is the most (only) important setting needed in xorg.conf. However, in order
to enjoy hardware support for 3D acceleration the virtual screen may not be
larger than 3000x2000. This limitation differs for the various driver, but for the
radeon driver the limitation is 3000x2000. This is sufficient for having an
external monitor running at 1600x1200 side-by-side with your internal display as
1400x1050.

After modifying xorg.conf you need to restart your X server, ie. logout and logon
again. Now, check your settings once again:

xrandr -q
Screen 0: minimum 320 x 200, current 1400 x 1050, maximum 3000 x 2000
VGA-0 connected (normal left inverted right x axis y axis)

1280x1024 59.9

1152x864 75.0 74.8

1024x768 84.9 75.1 70.1 60.0 43.5
832x624 74.6

800x600 84.9 72.2 75.0 60.3 56.2
640x480 84.6 75.0 72.8 66.7 60.0
720x400 87.8 70.1

LVDS connected 1400x1050+0+0 (normal left inverted right x axis y axis)
Omm x Omm

1400x1050 60.0*+
1360x768 59.8 60.0
1280x800 60.0

1152x864 60.0

1280x768 60.0

17

F8-x86_64 on the Acer Ferrari 3400LMi

1280x720 60.0
1024x768 60.0
800x600 60.3
640x480 59.9

(

S-video disconnected (normal left inverted right x axis y axis)

In the xrandr -q output above we see that the new virtual screen size is
recognized in the maximum value. Furthermore, we see our three supported
outputs, VGA-O (external display), LVDS (internal display), S-video (TV-out). For
the report above an external monitor is connected but not activated. Still
xrandr -qg reports its supported modes. Neat!

10.2.2 The xrandr tool

It is highly recommended that you read through the man page for xrandr and
play with it a bit to get to know it. A good place to start is at the debian wiki
http:/ /wiki.debian.org/XStrikeForce/HowToRandR12. It is a great tool that you
most likely will find useful. Connect an external monitor and try the following
commands.

Get a full report of the current status by:

xrandr --verbose
Activate the external monitor with its default mode and mirror the internal
display:

xrandr --output VGA-0 --auto

Put the external monitor to the left of the internal panel with:
xrandr --output VGA-0 --left-of LVDS

Change resolution and refresh rate of the external monitor:
xrandr --output VGA-0 --mode 1024x768 --rate 60

Turn off the external monitor:

xrandr --output VGA-0 --off

Set the TV-output in PAL mode instead of the default NTSC:

xranrd --output S-video --set tv_standard pal

10.2.3 Fn-F5 button

Once the virtual screen is configured and we feel confident in xrandr, it is time to
focus on the Fn-F5 special button. By default it does nothing, but now we have
the tools to configure it the way we want it to work.

First the Fn-F5 button needs to be recognized, so please refer to the section
8 Special keys & buttons above for the basic setup of the Fn-F5 button. After that

18

http://wiki.debian.org/XStrikeForce/HowToRandR12

F8-x86_64 on the Acer Ferrari 3400LMi

we design a script to run once Fn-F5 is pressed.

The Fn-F5 button should provide a simple, basic and robust functionality that
works for any external monitor. I prefer to toggle through the available connected
external outputs, while keeping the internal monitor alive. Furthermore, each
connected external output is present in two operating modes. First the external
output mirrors the internal display, then it extends the desktop by operating
side-by-side with the internal display. When both VGA-O and S-video are
connected the following operation modes are toggled each time Fn-F5 is pressed.

e LVDS (single head)

e LVDS + VGA-O (mirror)

e LVDS + VGA-O (side-by-side)
e LVDS + S-video (mirror)

e LVDS + S-video (side-by-side)

If a certain external device is not connected those modes are skipped.
Consequently, the sequence above will only appear when both VGA-O and S-video
are connected. With only VGA-O connected the sequence will only include the first
three modes from above.

Notice that the internal monitor may be dimmed at any time by pressing the
Fn-F6 button. Thus, turning off the internal monitor is not included in the script.
The script is outlined in Appendix B and may be downloaded at

http:/ /ferrari.database.se/3400/f8/dual-head.sh.

The script also includes some other common operation to manipulate the
graphical outputs. To see all supported operations, try:

dual-head.sh help

Binding this script to the Fn-F5 button is then configured in the
KDE Control Center -> Regional & Accessibility -> Input Actions.

If you run a more permanent dual-head setup you may want to configure the
preferred default settings in xorg.conf. This is done by the Monitor sections and
the lines

Option "Monitor-<output>" “..."

in the Device section of the xorg.conf file.

10.3 3D acceleration

3D hardware acceleration is provided by the dri module. This module is loaded
by default by the radeon driver, so no additional configuration is needed in
xorg.conf to get hardware support for 3D. However, any possible optimizations
that might improve performance are desirable.

19

http://ferrari.database.se/3400/f8/dual-head.sh

F8-x86_64 on the Acer Ferrari 3400LMi

10.3.1 Simple benchmark

In order to compare different settings we need some kind of benchmark tool. A
simple tool that comes with the glx-utils package found in most distributions
is glxgears. It may be rough, rudimentary and lacking a lot of hype features, but
it is present and sufficient for our needs.

An interesting exercise is to explicitly disable hardware acceleration and
comparing the result with the default xorg.conf. Without hardware acceleration
glxgears clocks in around a modest frame rate of 150 FPS, compared with
approximately 2050 FPS for the default configuration. This is quite a difference,
and it verifies that the radeon driver really does its job.

10.3.2 Optimization

The default values for most settings work well and there is no needed to modify
xorg.conf. Furthermore, most of the other settings are correctly auto-detected,
such as AGP 8x and memory. All this is reported by the X server in its log file
/var/log/Xorg.0.log during startup.

The options of most interest for performance are AccelMethod (default XAA),
AGPMode (auto-detected), ColorTiling (default on) and EnablePageFlip (default
off). The first three are correct by default, but due to instability in rare cases
EnablePageFlip is disabled by default.

Turning on the option EnablePageFlip in xorg.conf reveals no flaws. I have not
noticed any glitches with this option on my setup so I feel confident in
recommending it. Then the obvious question How good is it? It is good!

glxgears gives us an indication. By enabling EnablePageFlip performance is
increased from 2050 FPS to about 3270 FPS. A significant boost for tweaking one
single option.

You only need to add one line to the Device section in the default xorg.conf to
boost 3D performance:

Section "Device"
Identifier "VideocardO"

Driver "radeon"
Option "EnablePageFlip" "1"
EndSection

10.3.3 Other observations

During the optimization procedures a few interesting observations were made.
Primarily the CPU speed does not seem to matter. Most tests were run with the
CPU frequency first set to 8O0MHz, then repeated at 2000MHz. No significant
difference related to the CPU speed was noticed.

Furthermore, the size of the configured virtual screen does not affect

20

F8-x86_64 on the Acer Ferrari 3400LMi

performance. The tests has been run with the default size (1400x1200) and with
3000x2000, but no difference has been noticed. However, increasing the virtual
screen to more than 3000x2000 will disable hardware acceleration and of course
cripple performance completely.

These observations verifies that hardware 3D acceleration is really working and
that the radeon driver is taking care of business the way we want it to.

10.4 TV-out

TV output is available through the S-video connector on the rear of the Ferrari.
Furthermore, no special settings are needed in order to use it. It is immediate
available and may be controlled by xrandr. However, the tips below might help to
get you started.

10.4.1 Load detection

The external outputs have a property called load detection, that controls
whether RandR should try to auto-detect the output or not. Usually it is a good
thing to be able to auto-detect the different output features. However, there are
situations when you do not want auto-detection.

Remember that we have three outputs, but only two rendering pipelines (CRTCs).
What would then happen if we try to auto-detect and configure all available
outputs, xrandr --auto, with both VGA-0O and S-video connected? We actually
do not know. The internal display may only use the first pipeline, CRTC 0O, but
that might be allocated by either VGA-O or S-video. Furthermore, we will have a
race condition between the two remaining outputs for the second pipeline,

CRTC 1. In order to avoid potential conflicts like that, auto-detection is disabled
by default for S-video.

Thus, we first have to enable load detection in order to use the TV-output.
That is done by:

xrandr --output --set load detect 1

10.4.2 NTSC or PAL

The graphics chip defaults to NTSC, so those of us how want PAL need to
explicitly specify this. To change the TV mode to PAL use:

xrandr --output S-video --set tv_standard pal

10.4.3 Initialization

The script for dual head management presented in Appendix B assumes that all
external outputs may be auto-detected. Thus, if you want the script to consider
TV-out as a possible external output you need to enable auto-detection for TV-
out.

Consequently, we need to initialize some settings before TV-out is automatically

21

F8-x86_64 on the Acer Ferrari 3400LMi

handled by the script. The script includes an initialization option that may be
used for this. Put the following line in the file /etc/rc.local:

/usr/local/bin/dual-head.sh init

11 Touch-pad

The Synaptics touch-pad is properly configured during the installation, and
works well. I use it in conjunction with a USB mouse and both works well in
parallel. I have seen some reports on problems with the touch-pad 4-way multi-
button, but it works without any hassle for me. Likewise does the mouse wheel.

The InputDevice section in xorg.conf configured during the installation works
well and needs no modification:

Section "InputDevice"
Identifier "Synaptics"

Driver "synaptics"

Option "Device" "/dev/input/mice"

Option "Protocol" "auto-dev"

Option "Emulate3Buttons" "yes"
EndSection

For a complete reference you find my /etc/X11/xorg.conf file in Appendix A.

The special key to toggle the touch-pad (Fn-F7) also works without any special
configurations.

12 Wireless NIC

When it comes to the Broadcom BCM4306 802.11b/g WLAN chip on the Ferrari
you have two choices. The traditional NdisWrapper or the kernel module b43.
When I first got this laptop there was no other option than NdisWrapper, but
lately the kernel module b43 has evolved and matured.

As its name implies NdisWrapper is a wrapper for NDIS drivers, meaning that you
use a corresponding Windows driver instead of a Linux driver. For some WLAN
chips this is still the only option, but lately many chips enjoy almost native Linux
support by means of kernel modules. I say “almost” because many chips need to
be fed with proprietary firmware in order to operate. Anyway, this is a step in the
right direction, and the final goal must be to free the firmware as well.

With FC4 NdisWrapper was the obvious choice, but during FC5 its configuration
was (deliberately?) broken by the updates. Most FC5 updates re-installed the now
deprecated bcm4 3xx kernel module, even though it was previously disabled and
blacklisted. Thus, for most FC5 updates I had to disable the kernel module once
again and re-install NdisWrapper. In my opinion, the becm43xx kernel module was
not mature enough to compete with NdisWrapper at that time. So this was an
endless struggle to keep my WLAN support alive.

22

F8-x86_64 on the Acer Ferrari 3400LMi

However, with F8 the b43 kernel module is mature, stable and ready for
production. How to get the b43 kernel module to work is described below. To use
the NdisWrapper please refer to the FC4 version of this document, found at
http://ferrari.databa.se/3400/fc4/.

12.1 Installing WLAN

First we need to check and install some software so we have the tools we need.

12.1.1 WLAN tools

1. First we needed to make sure that the b43 kernel module is compiled and
properly loaded during system startup. For standard F8 kernels this is the
case, but if you compile your own brew you need to build it as a module:

dmesg | grep b43
b43-phy0: Broadcom 4306 WLAN found

b43-phy0 debug: Found PHY: Analog 2, Type 2, Revision 2
b43-phy0 debug: Found Radio: Manuf 0x17F, Version 0x2050, Revision 2

lsmod | grep b43

b43 150001 O

rfkill 14801 1 Db43
mac80211 127949 1 b43
input_polldev 12113 1 b43
ssb 38725 1 b43

2. Next we need to make sure that the wireless-tools package is installed on
our system:

rpm -q wireless-tools
wireless-to00ls-29-0.2.pre22.fc8

If not, we need to install it:

yum install wireless-tools

or

rpm -Uvh wireless-tools-29-0.2.pre22.fc8.x86 64.rpm

3. Finally we will need the b43-fwcutter package. Make sure that it is installed:

rpm -q b43-fwcutter
b43-fwcutter-008-1.fc8

or install it:

yum install b43-fwcutter

12.1.2 WLAN firmware

4. Now we need to download the Broadcom driver, so we may extract the

23

http://ferrari.databa.se/3400/fc4/

F8-x86_64 on the Acer Ferrari 3400LMi

firmware from it later. Download it at:
http://downloads.openwrt.org/sources/broadcom-wl-4.80.53.0.tar.bz2

or I keep a local copy, just in case:
http://ferrari,databa.se/3400/{c8/broadcom-wl-4.80.53.0.tar.bz2

5. Uncompress the driver:
tar jxf broadcom-wl-4.80.53.0.tar.bz2

6. Extract and install the firmware from the Broadcom driver as root:

cd broadcom-wl-4.80.53.0/kmod/
b43-fwcutter -w /lib/firmware wl_apsta.o

12.2 Get started with WLAN

Now that we have all the pieces we need installed, it is time to check the
functionality and get things working.

12.2.1 The manual way

First we do it manually, to make sure we get the results and feedback that we
expect. This is to verify the functionality and simplify troubleshooting, if needed.

7. The WLAN interface should show up:

iwconfig wlan0

wlan0 TIEEE 802.11g ESSID:""
Mode:Managed Channel:0 Access Point: Not-Associated
Tx-Power=0 dBm
Retry min limit:7 RTS thr:off Fragment thr=2352 B
Encryption key:off
Link Quality:0 Signal level:0 Noise level:O0
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

8. Turn on the WLAN chip and bring up the interface:
ip link set wlan0O up

9. OK, now it is time to find out what's in the air:

iwlist wlanO scan
wlan0 Scan completed
Cell 01 - Address: 00:E0:63:50:98:B0
ESSID: "Perspektiv"”
Mode:Master
Channel:1
Frequency:2.412 GHz (Channel 1)
Quality=88/100 Signal level=-25 dBm Noise level=-71
dBm
Encryption key:off

24

http://downloads.openwrt.org/sources/broadcom-wl-4.80.53.0.tar.bz2

F8-x86_64 on the Acer Ferrari 3400LMi

dBm

dBm

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s
Extra:tsf=000000alf76clda’7
Cell 02 - Address: 00:18:F8:D2:9E:F4
ESSID:"Secret Net"
Mode:Master
Channel:4
Frequency:2.427 GHz (Channel 4)
Quality=81/100 Signal level=-25 dBm Noise level=-71

Encryption key:on

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s
24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s
12 Mb/s; 48 Mb/s

Extra:tsf=0000003b0068b719

Cell 03 - Address: 00:11:6B:25:87:18

ESSID:"minideon"

Mode:Master

Channel:11

Frequency:2.462 GHz (Channel 11)

Quality=68/100 Signal level=-25 dBm Noise level=-71

Encryption key:off

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s
9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s
48 Mb/s; 54 Mb/s

Extra:tsf=0000008ded44c3d92

10.Choose a network you want to connect to and set the ESSID of your W-LAN
interface:

iwconfig wlan0 essid Perspektiv

11.Your WLAN interface should now be associated with the access point:

iwconfig wlan0
wlan0 IEEE 802.11g ESSID:"Perspektiv"

Mode:Managed Frequency:2.412 GHz Access Point:

00:E0:63:50:98:B0

Bit Rate=1 Mb/s Tx-Power=27 dBm

Retry min limit:7 RTS thr:off Fragment thr=2352 B
Encryption key:off

Link Quality=63/100 Signal level=-63 dBm Noise level=-58 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Now you are ready to start using your new interface. Most likely your first step
will be to request IP setting from an DHCP server (dhclient -1 wlan0). The next
step is probably to permanent your preferences in the file
/etc/sysconfig/network-scripts/ifcfg-wlano0.

For further information on wireless networking under Linux, please refer to the
numerous HOWTOs on the internet. A good place to start is

25

F8-x86_64 on the Acer Ferrari 3400LMi

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Wireless.html.

12.2.2 The GUI way

Once you have verified that you have the wireless network chip operational, as
described in the previous sections, it is time to have a look at a GUI that will help
you with all these steps and some other valuable tasks. The NetworkManager is a
service with a corresponding applet that will dock into your panel. It is included
in most distributions nowadays and is started by:

service NetworkManager start
service NetworkManagerDispatcher start

Try it out and play with it, if you like it and want it to start at system startup
type:

chkconfig --add NetworkManager

chkconfig --add NetworkManagerDispatcher

chkconfig --level 5 NetworkManager on
chkconfig --level 5 NetworkManagerDispatcher on

H= H H

13 Bluetooth

No special actions were needed for me to get Bluetooth up and running. It was
truly amazing how easy it was. However, in order to be complete the details are
summarized below.

13.1 Verify installation

Make sure that you have the bluez-utils package installed:

rpm -q bluez-utils
bluez-utils-2.25-4

Also make sure that it is configured to start at boot time:

chkconfig --1list bluetooth
bluetooth O:off 1l:0ff 2:o0on 3:0on 4:0n 5:0n 6:0ff

If not, you need to add it to the runlevel system:

chkconfig --add bluetooth

Now watch your system log while you push the bluetooth button on the front of
your laptop to activate your bluetooth circuities:

tail -f /var/log/messages

26

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Wireless.html

F8-x86_64 on the Acer Ferrari 3400LMi

... kernel: usb 4-2: new full speed USB device using uhci hcd and
address 4

... kernel: usb 4-2: configuration #1 chosen from 1 choice

... hcid[1963]: HCI dev 0 registered

... hcid[1963]: HCI dev 0 up

... hcid[1963]: Device hci0 has been added

... hcid[1963]: Starting security manager 0

... hcid[1963]: Device hci0 has been activated

The blue led indicator should start blinking as well. Now verify that your
bluetooth device is up and running:

hciconfig -a
hcioO: Type: USB
BD Address: 00:0E:9B:87:3B:90 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN
RX bytes:940 acl:0 sco:0 events:23 errors:0
TX bytes:586 acl:0 sco:0 commands:22 errors:0
Features: 0Oxff Oxff 0x0f 0x00 0x00 0x00 0x00 0x00
Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
Link policy: RSWITCH HOLD SNIFF PARK
Link mode: SLAVE ACCEPT
Name: 'redneck.superwise.net-0'
Class: 0x100100
Service Classes: Object Transfer
Device Class: Computer, Uncategorized
HCI Ver: 1.1 (0x1l) HCI Rev: 0x20d LMP Ver: 1.1 (0xl) LMP Subver:
0x20d
Manufacturer: Cambridge Silicon Radio (10)

If you have come this far without any problems you are all set and ready to go.

13.2 Using a phone modem

To help get you started I have summarized the basic steps to hook up your
bluetooth capable phone as a modem. I am using a Sony Ericsson P900 myself,
but the steps are general so it should work for most bluetooth phones.

The steps below are exactly the same whether you intend to connect to a remote
modem or connect over GPRS. When connecting over GPRS the phone also needs
to be connected and recognized as a modem. It is the actual dialing later on in
the process that differs.

With FC4 and FC5 I experienced some issues with the PIN-helper, i.e. the dialog
window that prompts for a PIN code. However, no such issues has been observed
with Fedora 8.

27

F8-x86_64 on the Acer Ferrari 3400LMi

13.2.1 Prepare the phone

First you need to configure your phone so it is available to your laptop. These
steps may vary in detail depending on vendor and model, so the user manual for
your phone may be handy.

Start by activating bluetooth on your phone and scan for other devices. You
should now be able to see your computer.

Add your computer as a known bluetooth device to your phone. The phone will
ask you for the pin code to connect to your computer. By default it is BlueZz, but
you may modify it in /etc/bluetooth/hcid.conf. Use the same pin code when
the computer prompts you whether to allow the incoming connection.

For convenience you should now configure your phone to allow this device (your
computer) to connect without prompting for a pin code.

13.2.2 Prepare the laptop

Now we are ready to configure the laptop. Start by scanning for bluetooth devices
in your surrounding:

hcitool scan
Scanning
00:0A:D9:E9:D8:4F S-Gs P900

The first field is the bluetooth address of your phone. The second field contains
its given name. You should also be able to ping it by its address:

12ping 00:0A:D9:E9:D8:4F

Ping: 00:0A:D9:E9:D8:4F from 00:0E:9B:87:3B:90 (data size 44)
0 bytes from 00:0A:D9:E9:D8:4F id 0 time 60.87ms

bytes from 00:0A:D9:E9:D8:4F id 1 time 27.77ms

bytes from 00:0A:D9:E9:D8:4F id 2 time 36.54ms

sent, 3 received, 0% loss

w O o

Note that you should use your own phones address instead. (My phone will
probably be out of range :-)

Now it is time to find out what services your phone provides:

sdptool browse 00:0A:D9:E9:D8:4F
Browsing 00:0A:D9:E9:D8:4F
Service Name: Voice gateway
Service Description: Voice gateway
Service Provider: Sony Ericsson
Service RecHandle: 0x10000
Service Class ID List:

"Headset Audio Gateway" (0x1112)

"Generic Audio" (0x1203)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOMM" (0x0003)

28

F8-x86_64 on the Acer Ferrari 3400LMi

Channel: 8
Language Base Attr List:
code IS0639: 0x656e
encoding: 0x6a
base offset: 0x100
Profile Descriptor List:
"Headset" (0x1108)
Version: 0x0100

Service Name: OBEX Object Push
Service RecHandle: 0x10001
Service Class ID List:
"OBEX Object Push" (0x1105)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 1
"OBEX" (0x0008)
Profile Descriptor List:
"OBEX Object Push" (0x1105)
Version: 0x0100

Service Name: OBEX File Transfer
Service RecHandle: 0x10002
Service Class ID List:

"OBEX File Transfer" (0x1106)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOMM" (0x0003)

Channel: 2
"OBEX" (0x0008)

Service Name: Bluetooth Serial Port
Service Description: Bluetooth Serial Port
Service Provider: Symbian Ltd.
Service RecHandle: 0x10003
Service Class ID List:

"Serial Port" (0x1101)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOMM" (0x0003)

Channel: 3

Language Base Attr List:

code _IS0639: 0x656e

encoding: 0x6a

base offset: 0x100

Service Name: Dial-up Networking
Service Description: Dial-up Networking
Service Provider: Sony Ericsson

Service RecHandle: 0x10004

Service Class ID List:

29

F8-x86_64 on the Acer Ferrari 3400LMi

"Dialup Networking" (0x1103)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 4
Language Base Attr List:
code _IS0639: 0x656e
encoding: 0x6a
base offset: 0x100
Profile Descriptor List:
"Dialup Networking" (0x1103)
Version: 0x0100

To use the phone as a modem the service of interest is the Dial-up Networking, so
note its channel number.

The next step will be to create a virtual serial device and connect it to your phone:

rfcomm connect 1 00:0A:D9:E9:D8:4F 4
Connected /dev/rfcomml to 00:0A:D9:E9:D8:4F on channel 4
Press CTRL-C for hangup

A short explanation of the command above:

rfcomm connect 1 00:0A:D9:E9:D8:4F 4

/dev/rfcomml _| | | Channel for the Dial-up
Your phones Networking service
bluetooth address

That is about it. Now your phone is analogue to an external modem connected
to your virtual serial device, /dev/rfcomml. Configure ppp to make use of it
and you are done.

13.2.3 Static configuration

Ok, now what? Do I need to repeat all the steps above each time I want to use my
phone as a modem? No, for convenience you may configure your system for all
this to take place automatically. However, the method you should use depends a
bit on your phone.

The preferred method is to edit the rfcomm.conf file so a /dev/rfcommX port
automatically binds to the DUN service on your phone when the bluetooth service
starts. This means that the virtual serial device will be created and properly
configured, but not connected. The actual connection will happen automagically
when the virtual serial device is accessed.

Edit the file /etc/bluetooth/rfcomm.conf to contain a section similar to this:

rfcomml {
Automatically bind the device at startup
bind yes;

30

F8-x86_64 on the Acer Ferrari 3400LMi

Bluetooth address of the phone
device 00:0A:D9:E9:D8:4F;

RFCOMM channel for the Dial Up Networking service
channel 4;

Description of the connection
comment "Modem on my phone";

}

13.2.4 Dynamic routine

If the method above works, you are all set and done. I started out that way and
everything worked great for a while. Then all of a sudden I was unable to connect.
It turned out that the DUN channel on my phone had changed!?! Instead of 4 as
in the example above it showed up as channel 2, and later on as channel 3...

The statical configuration done by editing the rfcomm.conf file cannot handle
this confusion. Instead I needed to dynamically decide which channel my phone
used for the DUN service today and bind to it.

This is done in a simple shell script, that is called just before I intend to connect.
Personally, I use Kppp and find it great for both modem-to-modem dial-ups and
GPRS connections. So, I have configured KDE to call my script just before Kppp
is opened.

First [was a bit suspicious about this method to work all the time, but I have not
had any trouble this far and I have been using it for years now. You may find a
printout of the script in Appendix C, or download it from

http:/ /ferrari.databa.se/3400/f8/dun-bind.sh. Obviously, you will need to
change the name of the bluetooth device, BTNAME, and maybe the port to connect
it to, RFPORT. Once that is done you may test run it:

wget http://ferrari.databa.se/3400/£f8/dun-bind.sh

chmod +x dun-bind.sh
./dun-bind.sh

Checking for local Bluetooth device... [OK]
Checking that /dev/rfcomml is free... [OK]
Searching for remote Bluetooth device S-Gs P900... [OK]
Searching for Dial Up Networking service... [OK]
Binding /dev/rfcomml to DUN channel 3... [OK]

rfcomm -a
rfcomml: 00:0A:D9:E9:D8:4F channel 3 clean

Now all you need to do when you want to use your phone as a modem are the
most basic steps:

Turn on bluetooth on your phone

Turn on the bluetooth hardware on your laptop
Dial!

31

http://ferrari.datba.se/3400_lmi/f8/dun-bind.sh
http://ferrari.databa.se/3400/f8/dun-bind.sh

F8-x86_64 on the Acer Ferrari 3400LMi

13.2.5 GPRS

As mentioned earlier the only difference between dialing modem-to-modem or
using the phone as a GPRS gateway to internet is just a matter of configuration.
Basic knowledge about modem commands and dialing is assumed, so modem-to-
modem dialing is not described here. However, some short hints on GPRS
connections are given below.

A GPRS connection is established by means of modem configuration rather than
actual dialing. Two AT command strings are vital for GPRS connections. First a
configuration string is used to specify things like protocol and network provider.
This string is passed during modem initialization and in my case it is:

AT+CGDCONT=1,"IP”,"services.vodafone.net”,””,0,0

After initialization the actual dialing is substituted by sending a connection
request to the network provider. The request contains the type of connection you
want to use, e.g PPP. It should look similar to:

AT+CGDATA="PPP",1

When used in a connection tool like Kppp the sequence of AT commands may
look similar to the one in the snapshot below.

a4 Login Script Debug Window

ATZ
OK

OK

ATMILL

OK

ATX3

OK
AT+CGDATA="PPP".1
CONMECT

Starting pppd...

32

F8-x86_64 on the Acer Ferrari 3400LMi

Notice the two AT strings discussed above. The other commands are mainly
cosmetic and may differ depending on your tool and its configurations.

13.3 Sending files

To send files to your OBEX (Object Exchange) capable phone you need the
packages openobex and openobex-apps.

obex push 3 00:0A:D9:E9:D8:4F test.jpg

| | Bluetooth address to send to
|
|

Channel for the OBEX Object Push service

A more convenient way to do this is to use the KDE extension KBluetooth
described in its own section below.

13.4 Mouse & keyboard

Once you have got bluetooth working it is a breeze to use a bluetooth mouse
and/or keyboard, a.k.a Human Input Device. First you need to scan for your
device. Make sure that bluetooth is activated on both the laptop and the
mouse/keyboard. Then press the setup button on the mouse/keyboard to make
it announce itself and type:

hidd --search
Searching ...
Connecting to device 00:0A:94:C1:B6:5D

In the next section you will find a more user friendly and persistent way of
connecting your bluetooth mouse/keayboard.

13.5 KBluetooth

If you are running KDE, there is a Bluetooth extension called KBluetooth
available. There is a similar package available for Gnome users, but KBluetooth is
discussed here. Before starting to explore it you should make sure that all the
details work. For this reason it is recommended that you start out with only the
basic bluez-utils package as described in the sections above. Once your bluetooth
works as expected, go ahead and install KBluetooth.

13.5.1 Installation

Once the details are in place and you know how things work, you may start to
play around with KBluetooth. First verify that it is installed by:

rpm -g kdebluetooth
kdebluetooth-1.0-0.37.beta8.fc8

33

F8-x86_64 on the Acer Ferrari 3400LMi

or install it with:
yum install kdebluetooth

After installing kdebluetooth you need to restart KDE, by logging out and back on
again. Once KDE is restarted KBluetooth will show up as a bluetooth icon in the
panel. It offers several useful features.

13.5.2 Mouse & keyboard

Connecting a bluetooth mouse or keyboard with KBluetooth is really simple.
Activate the mouse and move it around and it will be detected automatically. The
first time it is detected an authentication dialog is raised.

4 Bluetooth Authorization Request

Bluetooth Authorization
Request

Targus Bluetooth Media Mouse for
Notebook (device address
00:19:15:02:B4:0B) wants to act as Input
Device.

If you aren't sure about the identity of the
other party. then reject this authorization
request.

Always Accept H Reject H Accept

If you want to use the same device in the future without a new acknowledge press
Always Accept, otherwise just press Accept. Could it be easier?

13.5.3 Scan for devices

KBlueMon is a basic tool to scan for bluetooth devices nearby. It reports both
device address and name, signal strength as well as what services the device
provides.

34

F8-x86_64 on the Acer Ferrari 3400LMi

£ KBlueMon ? - O X%
SRRl Address: 00:0A:D9:E9:D8:4F

Name: 5-Gs PO00

Typ: not available

Version: Bluetooth 1.1

Revision: HCI 0x9040

Manufacturer: Ericsson Technology Licensing

Category: smart phone, phone

—Services

Voice gateway
Bluetooth Serial Port
Dial-up Networking
OBEX File Transfer
OBEX Object Push

Start Scan] [oK ID Periodic Scan e

[¥| Discover Remote Services

13.5.4 Lock screen

KBlueLock may be used to lock the screen whenever a bluetooth device becomes
unreachable. Once the device appears again the screen is unlocked. This is a very
convenient security measure to prevent others from fiddling with your Precious
when you leave it unattended.

ﬂz"r KBlueLock 2 o O X

¥ Lock the screen if the selected device disappears

(% Unlock the screen if the selected device appears again

5-Gs P900 00:0A:D9:E9:DS&:4F

[oK|| cancel |

35

F8-x86_64 on the Acer Ferrari 3400LMi

13.5.5 Transfer files

The Bluetooth OBEX Object Push client may be used to transfer files from the
computer to your phone or other bluetooth device.

¥ Bluetooth OBEX Object Push client
File 5Seftings Help

+Y€) (© E i Filter: all Files v

Location: -

sl dsc_0685.jpg[isl dsc_0691.jpg[s) dsc_0697.jpg[sl dsc_0703.jpglisl dsc_0709.jpg
=l dsc_0686.jpg =l dsc_0692.jpg[=) dsc_0698.jpg[5 dsc_0704.jpg[dsc_0710.jpg
=l dsc_0687.jpg =l dsc_0693.jpg[=) dsc_0699.jpg|= dsc_0705.jpg[l dsc_0711.jpg
sl dsc_0688.jpg|isl dsc_0694.jpg[=) dsc_0700.jpg|sl dsc_0706.jpglel dsc_0712.jpg
sl dsc_0689.jpg[isl dsc_0695.jpg[=) dsc_0701.jpg[sl dsc_0707.jpglisl dsc_0713.jpg

Device selector:
4 5-Gs P900 - OBEX Object Push

File to send:

Device Address: 00:0A:D9:E9:D8:4F

14 Infrared

IrDA support is provided by means of the package irda-utils, so first make
sure that this package is installed on your system.

My first attempt started with changing the DEVICE in /etc/sysconfig/irda to
/dev/ttyS1 and fire up the IrDA service (/etc/init.d/irda start). Voila!
Watching the log messages verified that all modules were loaded and I had got a
new device, irda0, to play with. The device showed up with ifconfig as well. It
was just too easy! And yes, although all looked perfect it did not work. Trying the
irdadump reviled just a big silence.

14.1 Configuring IrDA

To make a long story short, the IR-chip in the Ferrari supports FIR (as well as
SIR) and FIR is the default, while IrDA by default uses SIR. FIR is what you want

36

F8-x86_64 on the Acer Ferrari 3400LMi

to go for since it is faster than SIR and there is a stable Linux FIR driver available
for this IR-chip. Below I'll walk you through the steps that got it working for me.

1. Start with grabbing a pen and a piece of paper and restart your Precious.
Yes, this is one of those few occasions when you need to restart you Linux
system. Press F2 during boot-up to enter the BIOS and note the settings for
your IR-port. You do not need to change anything, but you need to know
your exact setting. I will use my own setting through out this example:

Base I/0 address: [2F8]
Interrupt: [IRQ 3]
DMA channel: [DMA 1]

Once you have noticed your corresponding setting just exit the BIOS
without saving and start your system.

2. Make sure that no other services use IRQ 3. Most likely your setting is also
IRQ 3, so start looking in the /etc/pcmcia/config.opts file. Here you
need to uncomment or insert the line

exclude irqg 3
to prevent the pcmcia service from intervening.

3. Now we want a module capable of handling FIR on the Ferrari chip to be
loaded when the IrDA service is started. The module of choice is nsc-ircc,
so add the following two lines in /etc/modprobe.conf:

alias irda0 nsc-ircc

options nsc-ircc dongle_id=0x09 io=0x2f8 irqg=3 dma=1

Pay attention to use the settings from your own BIOS for the last three
parameters.

4. We also need to tell the IrDa service to attach directly to the device for our
FIR capable module, so make sure to change the DEVICE setting in
/etc/sysconfig/irda to:

DEVICE=irda0

5. Then we do not want the generic Linux serial driver to interfere. One way of
doing that is to add the following line in /etc/init.d/irda:

setserial /dev/ttyS1l uart none

The line should be place just before
daemon /usr/sbin/irattach ${DEVICE} ${ARGS}

6. While you are at it you might as well disable SIR by commenting out the tty
lines. A short snippet of the final /etc/init.d/irda:

/sbin/modprobe ircomm-tty 2>/dev/null

37

F8-x86_64 on the Acer Ferrari 3400LMi

/sbin/modprobe irtty-sir 2>/dev/null
/sbin/modprobe irnet 2>/dev/null
setserial /dev/ttyS1l uart none
daemon /usr/sbin/irattach ${DEVICE} ${ARGS}

That is about it, You are done with the configuration.

14.2 Testing IrDA

Now start the IrDA service and watch the system log. Hopefully, you should see
something similar the the following:

service irda start
Starting IrDA: [OK]
dmesg | tail

ttySl: LSR safety check engaged!

pnp: Device 00:09 activated.

nsc-ircc, chip->init

nsc-ircc, Found chip at base=0x02e

nsc-ircc, driver loaded (Dag Brattli)

IrDA: Registered device irda0

nsc-ircc, Using dongle: IBM31T1100 or Temic TFDS6000/TFDS6500

This verifies that you have got the proper modules in place. The last step is to
verify that we are able both of transmitting and receiving traffic. So activate IR on
the remote device, e.g. your phone, and place the two IR-ports eye-to-eye. Then
do a dump of the traffic:

irdadump -i irdao0

...xid:cmd 62a9cc0d > ffffffff S=6 s=5 (14)

...xid:cmd 62a9cc0d > ffffffff S=6 s=* redneck hint=0400 [Computer]
(23)

...xid:cmd ffffffff < 6£700c8d S=1 s=0 (1l4)

...xid:rsp 62a9cc0d > 6£700c8d S=1 s=0 redneck hint=0400 [Computer]
(23)

...xid:cmd ffffffff < 6£700c8d S=1 s=* P900 hint=9325 [PnP PDA/Palmtop
Modem Telephony IrCOMM IrOBEX] (21)

You're all set! The first I did after this was to use irobex palm3 <SIS-file> to
upload and install GnuBox and some other programs on my phone. To do this
you need to have the openobex and openobex-apps packages installed and your
phone must supports the OBEX protocol. Pretty neat!

15 Modem

The Ferrari 3400 has a Smart Link soft modem installed. After the Ferrari 3400
was produced Smart Link was acquired by Conexant. Conexant has a strange
policy when it comes to providing drivers for it products. Linux drivers are not

38

F8-x86_64 on the Acer Ferrari 3400LMi

provided by Conexant, but by Linuxant. If you want all the features, fax, 56Kk,
etc., they will charge you for it. Although, a crippled version is free. I do not like
that philosophy at all. First you pay for the product, then they make you pay
again if you want to use it...

Fedora x86_64 has the ALSA kernel module snd_via82xx modem pre-compiled.
That module is capable of handling the internal soft-modem. Furthermore, this
module is properly loaded at startup. However, the modem is still a Smart Link
soft-modem so we need a corresponding user space daemon that utilize this ALSA
support for our modem.

Notice that the source code distributed by Linuxant is divided in two parts, one
general modem daemon and hardware specific drivers in the form of kernel
modules. Since we already have an ALSA driver for our model we only need the
modem daemon compiled with ALSA support.

That part is provided by Linmodems (http://linmodems.technion.ac.il). They do a
great job in providing binary modem daemons, by regular compiles of the
Linuxant code. This daemon may very well be compiled as a 32-bit executable.
Even if we are running on a 64-bit platform.

Note: Unfortunately the modem support is still unstable. Depending on the
versions of the modem daemon and the kernel it might work. Even though, it is
very fragile and might very well break on the next kernel update.

Since I do not use the modem I can live with this situation, but I am not happy
about it. The installation is not too complicated and is outlined below.

15.1 Installing daemon

Here are the basic steps to get the modem daemon up and running:

1. Start by checking that the alsa-utils package is installed:

rpm -g alsa-utils
alsa-utils-1.0.15-1.fc8
otherwise install it like this:

yum install alsa-utils

2. Verfiy that the proper ALSA kernel module is loaded and recognizes the
modem:

aplay -1
card 1: modem [VIA 82XX modem], device 0: VIA 82XX modem [VIA 82XX
modem |

Subdevices: 1/1
Subdevice #0: subdevice #0

3. Download the compiled modem daemon, SLMODEMD.gcc4.2.tar.gz, or

39

http://linmodems.technion.ac.il/

F8-x86_64 on the Acer Ferrari 3400LMi

later from http://linmodems.technion.ac.il/packages/smartlink/.

4. Unpack and install the daemon:

tar zxf SLMODEMD.gcc4.2.tar.gz
cd SLMODEMD.gcc4.2
install -m 755 slmodemd /usr/sbin/slmodemd

5. Verify that the SmartLink driver is able to find and configure an interface
for the modem:
slmodemd --country=SWEDEN --alsa --nortpriority
symbolic link ~/dev/ttySLO' -> ~/dev/pts/5' created.

modem “modem:1l' created. TTY is ~/dev/pts/5'
Use ~/dev/ttySLO0' as modem device, Ctrl+C for termination.

You may see a complete list of recognized countries by:

slmodemd --countrylist

6. For convenience I want the modem driver configured as a service that is
started by the Sys V init system. However, the scripts/slmodemd file
shipped with the package needs to be modified a bit in order to accomplish
this. You will find my modified version in Appendix D.

7. Download and add this script as a service to the Sys V system:

wget http://ferrari.databa.se/3400/£f8/slmodemd-sysv-init.sh
chmod u+x slmodemd-sysv-init.sh
./slmodemd-sysv-init.sh install

8. Now edit your configuration options in /etc/sysconfig/slmodemd:

A list of all supported country names can be retrieved
by calling "slmodemd --countrylist" from the shell prompt.
SLMODEMD COUNTRY="SWEDEN"

No additional device needed for ALSA mode
SLMODEMD DEVICE=

If set to yes the Advanced Linux Sound Architecture
subsystem is used to make your modem working.
USE_ALSA="yes"

Other options, see slmodemd --help for details
SLMODEMD_OPTS="--nortpriority"

9. Verify that the new service starts correctly:

service slmodemd start

Starting SmartLink Modem driver: [OK]
service slmodemd status

slmodemd (pid 8356) is running...

40

http://ferrari.databa.se/3400/f8/slmodemd-sysv-init.sh
http://linmodems.technion.ac.il/packages/smartlink/

F8-x86_64 on the Acer Ferrari 3400LMi

and look in /var/log/messages:

tail /var/log/messages

...slmodemd: symbolic link ~/dev/ttySLO' -> ~/dev/pts/6' created.
...slmodemd: modem “modem:1' created. TTY is ~/dev/pts/6'
...slmodemd: Use ~/dev/ttySLO' as modem device, Ctrl+C for
termination.

Just as the system log says you may now find the modem at /dev/ttySLO.
However, before starting to use the modem you should continue to read about a
potential issue.

15.2 Potential issue

As mentioned in the beginning of this section there might be a potential problem.
It was noticed in my previous attempts to get the modem working and it still
exists. It all depends on your setup. If you get it to play there should be no
problems, until your next update... Otherwise, you will likely notice something
similar to the descriptions below.

15.2.1 Connecting

The problem might occur while establishing a connection. The best way to
observe this is to start slmodemd manually with the debug flag set:

service slmodemd stop
Shutting down SmartLink Modem driver: [OK]
slmodemd -d=1 --alsa --country="SWEDEN" --nortpriority

Once the daemon is running in debug mode, dial the preferred number. The
modem goes on-line, dials the number and the other end answers. Before the
connection is established the daemon bails out during the negotiation with the
other part.

It starts to flood the console with the following messages:

<212.190899> main: alsa xrun: try to recover...
<212.191065> main: alsa xXrun: recovered.
<212.191069> main: dev read = 0

<212.191185> main: alsa xrun: try to recover...
<212.191351> main: alsa xXrun: recovered.
<212.191355> main: dev read = 0

The s1lmodemd process is stopped with Ctrl-C or service slmodemd stop from
another console window.

15.2.2 Disconnecting

If you are lucky the modem might be connecting properly and you may use it to

41

F8-x86_64 on the Acer Ferrari 3400LMi

take care of business. Dialing and connecting works fine and the debug output
looks ok. However, when the session is disconnected the debug output goes
south. It will start to flood the console with the exact same messages as seen
above during a connect. In this case we may actually use the modem but need a
small tweak.

My temporary fix for the problem in this case is to restart the slmodemd service
right after disconnecting a session. I configure my dial-up client, Kppp, to execute
/etc/init.d/slmodemd restart upon disconnect. Unarguable this is a really
dirty fix, but works quite well.

15.2.3 System hang

The issue reported above together with the fact that slmodemd runs with real-
time priority by default may be devastating. When the modem daemon goes
insane it will hug your CPU and squeeze it all real hard.

If the daemon has real-time priority you will have a hard to get control over you
system again and a forced shutdown might be the only way out.

Note: You should always run slmodemd with the --nortpriority option set.
Failing to do so might hang your entire system.

16 References

This document is a revised version of
FC4-x86_64 on the Acer Ferrari 3400LMi
http://ferrari.databa.se/3400/fc4/

Below are the links I found most useful when I originally sat up my Precious.
Thank you guys:
XStrikeForce/HowToRandR12 - Debian Wiki

Brice Goglin

http://wiki.debian.org/XStrikeForce/HowToRandR12

Linux IEEE 1394 drivers
http://www.linux1394.org

Fedora Core 1 on the Acer Ferrari 3000LMi
Evan
http:/ /ferrari.kicks-ass.org/

SuSE 9.1 Pro on the Acer Ferrari 3000LMi
Dirk Praet
http://www.designisdead.com/ferrari/

Wireless LAN resources for Linux
Jean Tourrilhes

42

http://ferrari.databa.se/3400/fc4/
http://www.designisdead.com/ferrari/
http://ferrari.kicks-ass.org/
http://www.linux1394.org/
http://wiki.debian.org/XStrikeForce/HowToRandR12

F8-x86_64 on the Acer Ferrari 3400LMi

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Wireless.html

43

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Wireless.html

F8-x86_64 on the Acer Ferrari 3400LMi

Appendix A - /etc/X11/xorg.conf

Xorg 7.2 configuration for Acer Ferrari 3400 LMi

#
Available at http://ferrari.databa.se/3400/£8/xorg.conf
Section "ServerLayout"
Identifier "Default Layout"
Screen 0 "ScreenO" 00
InputDevice "Keyboard0O" "CoreKeyboard"
InputDevice "Synaptics™ "CorePointer"
EndSection
Section "InputDevice"
Identifier "KeyboardO"
Driver "kbd"
Option "XkbModel" "pclO5"
Option "XkbLayout" "se"
EndSection
Section "InputDevice"
Identifier "Synaptics"
Driver "synaptics"
Option "Device" "/dev/input/mice"
Option "Protocol" "auto-dev"
Option "Emulate3Buttons" "yes"
EndSection
Section "Monitor"
Identifier "Internal Panel"
VendorName "Acer"
ModelName "Ferrari 3400 LMi"
Option "PreferredMode" "1400x1050"
EndSection
Section "Monitor"
Identifier "External VGA Monitor"
Option "LeftOof" "Internal Panel"
EndSection
Section "Monitor"
Identifier "External TV"
Option "RightOf" "Internal Panel"
EndSection
Section "Device"
Identifier "vVideocardO"
Driver "radeon"

44

http://ferrari.databa.se/3400/f8/xorg.conf

F8-x86_64 on the Acer Ferrari 3400LMi

Option "Monitor-LVDS" "Internal Panel"
Option "Monitor-VGA-0" "External VGA Monitor"
Option "Monitor-S-video" "External TV"

Option "AccelMethod" "XAA"

Option "AGPMode" "in

Option "ColorTiling" "l
Option "EnablePageFlip" "1t

EndSection

Section "Screen"
Identifier "ScreenO"
Device "VideocardO"
DefaultDepth 24
SubSection "Display"
Viewport 00

Depth 24
Virtual 3000 2000
EndSubSection

EndSection

45

F8-x86_64 on the Acer Ferrari 3400LMi

Appendix B - dual-head.sh

#!/bin/bash

H= H e e H e S e e o 3 o 3 3 o W S

Edit user settings here:

Available at http://ferrari.databa.se/3400/f8/dual-head.sh

A script to manipulate connected graphical outputs,
including TV-out. It includes the most common operations
and may also be configured to run on an XF86Display event.
Typically Fn-F5 or similar on a laptop.

Prerequisites:

This script will work with one graphics card only.
Furthermore it will only work with two CRTCs,

i.e. two outputs may be simultaneous active.

Comments:

In order to optimize performance and minimize flicker
xrandr is at most called twice. Once to read the current
state and once for setting the new state. Thus, some code
may look strange at the first glance.

By Sven-Goran Bergh, 2008-01-01

#
DEFAULTACTION="toggle" # May be changed with argument 1
DEFAULTSIDE="left" # May be changed with argument 2
#

FHABHHHHAHH A A A SRR A AR AR AR R R R R R R R R R R R R

Edit hardware specific settings here:

#
INTERNAL="LVDS" # Specify the name of the internal display
TVOUTPUT="S-video" # Specify the name of the TV-output
TVMODE="pal" # Specify TV mode, PAL or NTSC

#

FHABHHHHAH A A A SRR H AR AR AR R R R R R R R R R R

#

Get X user

#XUSER=$(w | awk '$3 ~ /":[0-9]1$/ {print $1; nextfile}')

#

Get X display (current or first running)

DISPLAY=${DISPLAY:= \

#
[

$(w | awk '$3 ~ /":[0-9]$/ {print $3; nextfile}')}

Quit if no X-server is running
"${DISPLAY}"] || exit 1

46

BRAFHHHAFRRAFHRATRRHFRRAS SR E SRS

FHEAHA AR RS ARRSE

http://ferrari.databa.se/3400/f8/dual-head.sh

F8-x86_64 on the Acer Ferrari 3400LMi

function usage() {
printf "Usage: %s [init|toggle|status|internal|tv [side]]\n" \
"“basename $0°"

}

ME="basename $0 .sh"

What to do?
ACTION="${1:-SDEFAULTACTION}"

Which side of $INTERNAL should the external output be shown?
SIDE="${2:-$SDEFAULTSIDE}"

If invalid action or help, quit before calling xrandr
case “echo "S$ACTION" | tr A-Z a-z in

init | toggle | status | internal | tv)

Recognized actions. Do nothing and continue...

7
help | usage)

usage

exit 0

~e

° o
rrs

printf "%s: Unknown operation, %s\n" "$SME" "$ACTION"
usage
exit 1

r7s

esac

Get information about all outputs
ALLINFO=($(\
xrandr -q \
| awk -- '/connected/ {
printf " %s", $1;
if ($2 !~ /dis/) {
if ($3 ~ /[0-9]+x/)
printf "@%s", $3;
else
printf "@";
}
PN
))

Initialize some useful variables
for ((i=0; i<${#ALLINFO[*]}; i++)) {
Array with all outputs
ALLOUT[Si]=S(\
echo "S${ALLINFO[Si]}" \
| awk -F@ -- '{print $1}' \
)
Array with all connected outputs
CONCTD[S$i]1=$(\

47

F8-x86_64 on the Acer Ferrari 3400LMi

echo "S{ALLINFO[Si]}" \
| awk -F@ -- '/@/ {print $1}' \
)
Array with all active outputs
ACTIVE[S$i]=S(\
echo "${ALLINFO[S$i]}" \
| awk -F@ -- '/@Q[0-9]+x/ {print $1}' \
)
Array with all resolutions
ALLRES[$i]=$(\
echo "S{ALLINFO[S$i]}" \
| awk -F@ -- '{print $2}' \
| awk -F+ -- '{print $1}' \
)
Array with all positions
ALLPOS[Si]=S(\
echo "S{ALLINFO[Si]}" \

| awk -F@ -- '{print $2}' \
| awk -F+ -- '/+/ {print $2 "+" $3}' \
)
Index for the internal output
["${ALLOUT[$i]}" == "SINTERNAL"] && INTNDX=$i
Index for the currently active external output
["${ACTIVE[S$i]}" -a "S${ACTIVE[$i]}" != "$INTERNAL"] \

&& CURNDX=$i
}

CURNDX=$ { CURNDX : - $ INTNDX }
CURRENT=$ {ALLOUT [$CURNDX] }

case “echo "${SIDE}" | tr A-Z a-2z in
left)
LOCATION="--left-of $INTERNAL"
right)
LOCATION="--right-of $INTERNAL"

rs
top | above)
LOCATION="--above $INTERNAL"
7
bottom|below)
LOCATION="--below SINTERNAL"

r7s

esac

function run() {
EXEC="$*"
logger -t S$ME "Executing: SEXEC"
SEXEC | logger -t $ME

}

function init() {

48

F8-x86_64 on the Acer Ferrari 3400LMi

Set load detection on all external outputs
for out in ${ALLOUT[*]}; do

["Sout" != "SINTERNAL"] && \
INIT="$INIT --output $out --set load detection 1"
["Sout" == "$TVOUTPUT"] && \
INIT="S$INIT --set tV_standard STVMODE"
done
run xrandr S$INIT
}
function status() {
printf "%-10s%-11s%-8s%-10s%-10s\n" \
"Output" "Connected" "Active" "Position" "Resolution"
for ((i=0; i<${#ALLOUT[*]}; i++)) {
["S{CONCTD[S$i]}"] && c="yes" || c="no"
["S{ACTIVE[S$i]}"] && a="yes" || a="no"
printf "%-13s%-9s5%-7s%-10s%-10s\n" \
"${ALLOUT[$i]}" "$c" "sa" \
"${ALLPOS[$i]}" "${ALLRES[$i]}"
}
}

function internal() {
Internal output always active
INT="--output $INTERNAL --auto --pos 0x0"

Turn off currently active external output
["SCURRENT" != "$INTERNAL"] && \
OFF="--output S$SCURRENT --off"

run xrandr S$SINT S$OFF
}

function tvout() {
If TV-output already active, exit
["SCURRENT" == "$TVOUTPUT"] && exit 0

Internal output always active
INT="--output $INTERNAL --auto"

Turn off currently active external output

["S$CURRENT" != "SINTERNAL"] && \
OFF="--output S$CURRENT --off"

TV="--output $TVOUTPUT --auto S$LOCATION"

run xrandr SINT S$TV SOFF
}

function toggle() {
Go to the next connection mode in the toggle sequence:

LVDS (single) =>

49

F8-x86_64 on the Acer Ferrari 3400LMi

LVDS+S-video (mirror) =>
LVDS+S-video (side-by-side)
LVDS+VGA-0 (mirror)
LVDS+VGA-0 (side-by-side)
LVDS (single) =>
Connection modes that include not connected outputs are skipped.
Ex: with only VGA-0 connected it is only three connection modes:

(U
vV V. V

H H H H= H H H = H

if ["SCURRENT" != "SINTERNAL" -a \
"S${ALLPOS[SINTNDX]}" == "S${ALLPOS[SCURNDX]}"]; then
NEXT=$CURRENT
else
for ((i=0; i<S${#ALLOUT[*]}; i++)) {
["${CONCTD[$i]}" == "${CURRENT}"] && break
}
until ["SNEXT"]; do
i=§((($i+1)%${#ALLOUT[*]}))
NEXT=${CONCTD[$i]}
done
fi

Internal output always active
INT="--output S$SINTERNAL --auto"

Turn off currently active external output
["SCURRENT" != "SINTERNAL" -a "SCURRENT" != "$NEXT"] && \
OFF="--output S$SCURRENT --off"

Turn on next connected external output
["SNEXT" != "SINTERNAL"] && \
ON="--output S$NEXT --auto"

If mirror mode, reposition internal output.
Otherwise position external output
["$NEXT" != "$CURRENT"] \

&& INT="SINT --pos O0xO0" \

|| ON="$ON $LOCATION"

run xrandr S$INT S$OFF SON
}

case “echo "$ACTION" | tr A-Z a-z in
init)
init
P
toggle)
toggle
P
status)
status

rrs

50

F8-x86_64 on the Acer Ferrari 3400LMi

internal)
internal

tv)
tvout

rrs

usage

rrs
esac

51

F8-x86_64 on the Acer Ferrari 3400LMi

Appendix C - dun-bind.sh

#!/bin/sh
Available at http://ferrari.databa.se/3400/£8/dun-bind.sh

A verbose sample script for finding the Dial Up Networking
channel on a Bluetooth device and binding a /dev/rfcomm port to it.

By Sven-Goran Bergh, 2005-11-03
Update 2007-04-03 Added release of passive/closed rfcomm port.

H= = H = = H H =

Use this /dev/rfcomm port
RFPORT=1

Name of Bluetooth device to bind to:
BTNAME="S-Gs P900"

success() {
echo -e $"\\033[60G[\\033[1;32mOK\\033[0;39m "
return 0

}

failure() {
echo -e $"\\033[60G[\\033[1;31mFAILED\\033[0;39m]"
exit 1

}

Check that local Bluetooth device is active
echo -n $"Checking for local Bluetooth device..."
hciconfig | grep 'UP RUNNING' &> /dev/null \

&& success || failure

If the rfcomm port exists but is currently not in use, try to release
it

if ["“rfcomm show ${RFPORT} 2> /dev/null | awk -- '{print $5}' " ==
"closed"];
then

echo -n $"Trying to free closed port /dev/rfcomm${RFPORT}..."
rfcomm release ${RFPORT} &> /dev/null \
&& success || failure
fi
Check if the rfcomm port is free
echo -n $"Checking that /dev/rfcomm${RFPORT} is free..."
rfcomm show ${RFPORT} &> /dev/null \
&& failure || success

Check for the remote Bluetooth device

52

http://ferrari.databa.se/3400/f8/dun-bind.sh

F8-x86_64 on the Acer Ferrari 3400LMi

echo -n $"Searching for remote Bluetooth device ${BTNAME}..."
BTADDR="hcitool scan | grep "${BTNAME}" | awk -- '{print $1}'>
["S{BTADDR}"] && success || failure

Find the Dial Up Networking channel
echo -n $"Searching for Dial Up Networking service..."
DUN="sdptool search --bdaddr ${BTADDR} DUN \
| awk -- '/Channel/ {print $2}'"
["${DUN}"] && success || failure

Bind the rfcomm port to the DUN channel
echo -n $"Binding /dev/rfcomm${RFPORT} to DUN channel ${DUN}..."
rfcomm bind ${RFPORT} ${BTADDR} ${DUN} \

&& success || failure

53

F8-x86_64 on the Acer Ferrari 3400LMi

Appendix D - /etc/init.d/slmodemd

#!/bin/sh

#

Available at http://ferrari.databa.se/3400/f8/slmodemd-sysv-init.sh
Use slmodemd-sysv-init.sh install to install it.

#

slmodemd: Starts the SmartLink Modem Daemon

#

chkconfig: 345 90 10

description: This is the user space part of the SmartLink Modem driver
processname: slmodemd

config: /etc/sysconfig/slmodemd

Source function library.
. /etc/init.d/functions

PROG=s1lmodemd
RETVAL=0

Default configuration
SLMODEMD_DEVICE=
SLMODEMD_OPTS=
SLMODEMD_COUNTRY=SWEDEN
USE_ALSA="yes"

Source configuration
CONFIG=/etc/sysconfig/${PROG}
if [-f $CONFIG]; then
SCONFIG
override default group and permissions if defined in S$CONFIG;
other valid options also can be put into SLMODEMD OPTS variable

["SGROUP"] \
&& SLMODEMD OPTS="$SLMODEMD OPTS --group=$GROUP"
["SPERMS"] \

&& SLMODEMD OPTS="S$SLMODEMD OPTS --perm=$PERMS"
fi

Do not try to start on a kernel which does not support it
if [SUSE_ALSA != "yes"]; then

grep -q 'slamr\.o' /lib/modules/ uname -r>/modules.dep || exit 0
fi

if [$USE _ALSA = "yes"]; then
SLMODEMD_OPTS="$SLMODEMD_OPTS --alsa"
else
SLMODEMD_OPTS="$SLMODEMD_OPTS $SLMODEMD_DEVICE"
fi

start() {

54

F8-x86_64 on the Acer Ferrari 3400LMi

echo -n "Starting SmartLink Modem driver: "
${PROG} --country=$SLMODEMD COUNTRY $SLMODEMD OPTS 2>&1 \
| logger -t ${PROG} &
PID="pidof ${PROG}"
RETVAL=$?
[SRETVAL -eq 0] \
&& success $"${PROG} startup" \
|| failure $"${PROG} startup"
echo
[SRETVAL -eq 0] \
&& touch /var/lock/subsys/${PROG}
return $RETVAL

}

stop() {
echo -n "Shutting down SmartLink Modem driver: "
killproc ${PROG}
RETVAL=$?
[SRETVAL -eq 0] && rm -f /var/lock/subsys/${PROG}
echo
return $RETVAL

}

See how we were called.
case "S1" in
start)
start

rrs

stop)
stop

rrs

status)
status ${PROG}
RETVAL=$?

restart|reload)
stop
start
RETVAL=S$?
T
condrestart)
if [-f /var/lock/subsys/${PROG}]; then
stop
start
RETVAL=$?
fi
T
install)
install -t -m 755 $0 /etc/init.d/${PROG} &> /dev/null
chkconfig --add ${PROG}

r7s

55

F8-x86_64 on the Acer Ferrari 3400LMi

echo "Usage: ${PROG} {start|stop|status|restart|condrestart
install}"

exit 1
esac

exit SRETVAL

56

	 1 Introduction
	 1.1 Version
	 1.2 Quick reference guide

	 2 Installation
	 2.1 Potential pitfalls
	 2.1.1 Graphical installer
	 2.1.2 Disk size

	 3 Hard drive
	 3.1 Upgrading the drive

	 4 IEEE 1394 Firewire
	 4.1 Potential problems
	 4.2 Configuring Firewire
	 4.3 Comments

	 5 USB
	 6 5-in-1 Card reader
	 7 PC-card
	 8 Special keys & buttons
	 8.1 Configuration procedure
	 8.1.1 X key-codes
	 8.1.2 Scan-codes
	 8.1.3 Linux key-codes
	 8.1.4 X key-codes revisited
	 8.1.5 Configure actions

	 9 CPU & ACPI support
	 9.1 Suspend
	 9.2 CPU frequency scaling

	 10 Graphics
	 10.1 Basics
	 10.1.1 The radeon driver
	 10.1.2 Simple configuration

	 10.2 Dual-Head
	 10.2.1 Virtual screen size
	 10.2.2 The xrandr tool
	 10.2.3 Fn‑F5 button

	 10.3 3D acceleration
	 10.3.1 Simple benchmark
	 10.3.2 Optimization
	 10.3.3 Other observations

	 10.4 TV-out
	 10.4.1 Load detection
	 10.4.2 NTSC or PAL
	 10.4.3 Initialization

	 11 Touch-pad
	 12 Wireless NIC
	 12.1 Installing WLAN
	 12.1.1 WLAN tools
	 12.1.2 WLAN firmware

	 12.2 Get started with WLAN
	 12.2.1 The manual way
	 12.2.2 The GUI way

	 13 Bluetooth
	 13.1 Verify installation
	 13.2 Using a phone modem
	 13.2.1 Prepare the phone
	 13.2.2 Prepare the laptop
	 13.2.3 Static configuration
	 13.2.4 Dynamic routine
	 13.2.5 GPRS

	 13.3 Sending files
	 13.4 Mouse & keyboard
	 13.5 KBluetooth
	 13.5.1 Installation
	 13.5.2 Mouse & keyboard
	 13.5.3 Scan for devices
	 13.5.4 Lock screen
	 13.5.5 Transfer files

	 14 Infrared
	 14.1 Configuring IrDA
	 14.2 Testing IrDA

	 15 Modem
	 15.1 Installing daemon
	 15.2 Potential issue
	 15.2.1 Connecting
	 15.2.2 Disconnecting
	 15.2.3 System hang

	 16 References
	Appendix A – /etc/X11/xorg.conf
	Appendix B – dual-head.sh
	Appendix C – dun-bind.sh
	Appendix D – /etc/init.d/slmodemd

